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This paper gives the results of an investigation of the kinetics of sep-
aration and mixing of dispersed materials due to vibration or a flow
of liquid or gas in application to mineral enrichment and screen sep-
aration of grain products and other materials,

We imagine a fluidized bed of loose material con-
taining particles which differ in their properties (geo-
metric, mechanical, etc.). The position of a particle
of any component of the mixture (small or large, heavy
or light) is defined by the coordinate z, measured
from the bottom of the bed.

In a fluidized bed z(t) {wiil undergo random in-
creases, and its variation will be regarded as a ran-
dom. Markovian process and interpreted as a linear
random walk of the image point along the z axis., We
will denote the probability density of the investigated
process by w(t, z). Thenwdz isthe probability that the
wandering particle is inthe region (z, z + dz) at instant t.

By the probability we mean the number of favorable
results of the random process. However, we can im-
agine numerous outcomes occurring simultaneously,
i.e., we can picture a large number of independently
moving particles instead of one moving particle. Then
this probability gives the fraction of the total number
of particles found in the prescribed region, i.e., wdz
gives the relative number of particles located at in-
stant t in the region (z, z + dz), Hence, the probability
density has the sense of the relative concentration of
image points and can be physically interpreted as the
relative concentration of the particular component of
the mixture,

The probability density of a one-dimensional Mar-

- kovianiprocess satisfies the Kolmogorov-Fokker-
Planck differential equation
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which describes the forced guasi-diffusion of image
points.

The stochastic coefficient c¢(t, z) has the sense of
the velocity of ordered motion of the particles under
the action of an external field (gravitational, hydro-
dynamic, for instance). The coefficient bit, z) is a
measure of the disorder of the motion and has the
sense of the coefficient of quasi-diffusion of the par-
ticles. If the process is homogeneous in space, then
the stochastic coefficients may depend only on the
time or, in particular, be constant. The quasi-dif~|
fusion coefficient b in this case depends on the size of
the particles and the effective viscosity of the flu~

idized medium and characterizes the mobility of the
particles in the bed.

If the particles of the mixture differ in density,
the coefficient ¢ will be proportional to the difference
in densities of the particles, and, if this difference
is small, the gravitational flow of the particles will
cease to affect the transfer process.

In terms of random walk theory the last assump-
tion corresponds to acceptance of the equiprobable
motion of the particles in both directions. In the case
where ¢ = 0, i.e., when the external field has an
organizing effect, the motion of the particles will be
asymmetrical, more moving in one direction than
the other.

If the process is due to a flow of water or air, the
stochastic coefficients b and ¢ will largely depend on
the velocity of the fluidizing stream.

The literature of fluidization [1, 2] gives some in-
formation about the effective viscosity of a bed and
the speeds of settling of the particles. This can be
used to explain the relationships between the stochastic
coefficients and the acting factors. Keeping within the
framework of the stochastic description of the problem
we will assume that the coefficients b and ¢ are known,
say, from experiment.

The solution of the differential equation (1) must be
consistent with the boundary and initial conditions cor-
responding to the process.

By calculating the probability density w(t, z) we can
solve several problems entailing the determination of
the indices of mixing and separation processes. For
instance, the obtained relationship w = w(t, z) gives
the law of variation of the relative concentration. In
the case of mixing of lpose materials it will be possible
to solve not only the problem of producing a mixture
of maximum possible homogeneity, but also the sep-
aration problem—to separate the mixture according
to the properties of the particles.

In the case of screen separation, and also in sev—
eral industrial processes effected in a fluidized bed,
the particies leave the bed—they pass through the holes
in the screen or are carried off into the space above
the bed. The indices of these processes are the ex-
traction or entrainment, defined as the relative num-
ber of particles which have left the bed by the instant
t. The extraction or entrainment can be defined by a
"probability quantity" e carried through the screen or
the surface of the bed:
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This expression gives the probability that a particle
will leave the bed by the instant t, It is obvious that
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gives the probability that the particle will remain in
the bed during the time t, or the relative number of
particles still in the bed at this time.

We will illustrate the foregoing by examples of cal-
culation of the indices of mixing and screen separation.
Mixing. Let the initial distribution of particles in

the mixer be specified by a delta function w(0, z) =
= 6(z — h). This is the distribution for the case where
the mixture component is delivered to the surface of
the bed. We define the evolution of this initial distri-
bution by using Eg. (1) with constant stochastic coef-
ficients
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in which c is the velocity of induced transfer of the
particles towards the bottom of the bed.
As a boundary condition we assume that

when z =0 and z = h,

This condition for total reflection of the randomly
moving particles from the boundaries of the region
means that, on attaining these boundaries, the par-
ticles will subsequently take part in the mixing
process.

The solution of Eq. (3) with these conditions will
be
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The obtained equation for the kinetics of mixing
relates the relative concentration of dynamically_
"heavy" (h > 0) particles, and "light" particles (h <
< 0) to the two process parameters t and h, which
depend on the two experimental coefficients b and ¢
characterizing the dispersion of the particles and the
intensity of the external field.

When particles are mixed in the absence of an ex-
ternal field, i.e., when the particles have the same

mechanical properties, the velocity of induced transfer

¢ = 0. In this case, when h = 0 we obtain from (4)
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According to (5), with the elapse of time the com-
position of the mixture evens out over its thickness
and when (7%b/2h%)t = 4 the concentration of the mix~
ture differs from that for a uniform distribution by
not more than 5%.
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Fig. 1. Distribution of relative concentration of heavy

particles after different times of mixing for cases of a

deltoid initial distribution (a) anda uniform initial

distribution (b) with h =0.5: 1) t =0, 2) 0.01; 3) 0.05;
4) 0.1; 5) 0.2; 6) =.

As distinct from this case, a uniform distribution
of particles in the bed cannot be obtained in the case
of mixing of dynamically heterogeneous particles dif-
fering in density and resistance to motion (Fig. 1a).

The heavy particles located on the surface of the
bed at the start of the process penetrate into the bed
and, finally, attain a limiting distribution for the part-
icular h,

Although a uniform distribution cannot be attained,
there is at a certain instant t (in this case t ® 0.12) an
"optimum" particle distribution. Equation (4) can be
used for optimization of the process. K the quality of
the mixing processischaracterized by the mean square
deviation from the uniform particle distribution
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the minimization of this index will give the optimum
value of the parameter t for a given h,

The equations for the kinetics of the process can
be obtained for any other specified initial distributions.
For example; in the problem of the demixing of part-
icle mixtures, which is an important factor in gravity
enrichment processes, the case of a uniform initial
particle distribution in the layer (Fig. 1b) can be of
interest.

For this case we can obtain the following equation
for the kinetics of demixing of the mixture:
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With the passage of time the initially uniform dis=~
tribution again becomes a limiting one. The "light"
particles "float up" to the surface of the bed in the
separation process, and the heavy particles settle to
the bottom.
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Fig. 2. Limiting distributions
of heavy particles over thick~
ness of bed: 1) h = 0.1, 2) 0.3;

3) 0.5; 4) 1.0.

Irrespective of the initial conditions, the limiting
distributions of heavy particles over the thickness of
the bed for different h (Fig. 2) are such that the mir-
ror reflection of these curves gives the curves cor-
responding to the mixing of light particles.

If the material is fed continuously into the mixer
during the mixing process the length of time spent by
the mixture in the apparatus can be related to the
adjustable and kinematic parameters and the feed rate.
The coefficients ¢ and b, which are required for cal-
culation of the mixing indices, can be determined by
two experiments.

In the presented sample calculation we ignored pos-
sible mixing of the load in the apparatus due to the
action of agitators of any kind or convection currents
produced in apparatuses with a fluidized gas.

It is to be hoped that within the framework of the
expounded theory it will be possible to take into con-
sideration macromixing of the load in the mixer and
to avoid the assumption of uniformity of the process
and constancy of the coefficients b and ¢, or a one-
dimensional treatment of the problem.

Separation. A "vibro-separated" mixture consists
of particles of different shapes, sizes, and densities.
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The efficiency of separation of the mixture in screen
separation processes can be estimated in most cases
by the extraction of small heavy particles under the
screen and the possible extraction of small light part-
icles contaminating the main product.

On the assumption of constancy of the stochastic
coefficients the extraction can be calculated from the

formula
¢
: (o ow .
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We determine the probability density w(t, z) from
the equation
ow
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with appropriate initial and boundary conditions.

Assume that at the initial instant w = w(0, z). For
practically feasible conditions of loading of the mate-
rial there is a uniform distribution over the thickness
of the bed

w (0, 2) = Uk

and a deltoid distribution

w(0, 2) = 8(z— h).

As one boundary condition we use the condition of
zero particle flux through the upper boundary of the
bed, i.e.,

Ow
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Taking into account that some or all of the small
particles which reach the surface of the screen drop
out of the bed, we will assume that the particle flux
through the surface of the screen is proportional to
their concentration at this surface, i.e.,

b 0 '
2 + cw = kw when z=0.
2 0z

This assumption, which has been experimentally
confirmed in numerous investigations of the separa-
tion and sieving of loose materials in a shallow bed,
was arrived at in [3] from a stochastic description of
the passage of particles through a screen. The sifting
coefficient k, as shown in this paper, is proportional
to the initial particle concentration and the difference
in the sizes of the holes and particles.

When k = « (w = 0) and z = 0 unobstructed sifting
occurs; when k = 0 there is no extraction of particles
under the screen and mixing takes place.

With these conditions we obtain

2 — 2
s‘=1—-—£ a,, (b, a)exp{-( fﬁ"; —}—l)f], (8)
m=1 )

where h = ch/2b; o = 2k/c; py are the positive roots
of the transcendental equation -
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The form of the function am(ﬁ, a) depends on the
initial particle distribution and the nature of the bound~
ary conditions. Thus, for the case of unobstructed
precipitation of particles from the bed (k = », a = «,
PmCtgom = —2h) and a uniform initial distribution
we obtain the expression

20,(pm+ 4_ﬁsinpm exp 2 4)

am = =9, - - 1
(0% + DL+ 4R + 2h) (10)

and for a deltoid distribution

20, Sinp,exp2h
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In addition to calculation of the screen separation
indices the presented formulas can be used to deter-
mine particle entrainment from a fluidized bed, and
also the probability of the residence time of a particle
in the bed. The expression

—e :i amexp[—( 52%2
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gives the probability of a particle remaining in the bed
until the instant t, or the relative number of particles
remaining in the bed at this time.

If at the initial instant the particles are uniformly
distributed throughout the thickness of the bed, then
@y, 18 given by formula (10); in the case of a deltoid
distribution ay, is given by (11). It is assumed in this
case that light particles are entrained through the up-~
per boundary of the bed or heavy particles through the
lower boundary. In particular, when formulas (10) and
(11) are used, it is assumed that particles which reach
the boundary of the bed leave it without obstruction.

The above calculation ignores the effect of the sep-
aration space on the entrainment of the solid phase
from the bed. Within the framework of the propounded
theory we should be able to allow for the return of
particles from the space above the bed in calculating
the entrainment.

The relationships for the entrainment and the time
spent by particles in the bed, derived from the curves
shown in Fig. 3, agree qualitatively with experimental
results [1].

In the case of separation of mixtures of particles of
the same density in the absence of a flow under the
screen we can assume that the stochastic coefficient
c=0, h=0.

For this case, which corresponds to sieving, we
obtain for a deltoid initial particle distribution
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where p,, is determined from the equation pytgoy =
= 2h; and the symbols

hy= hk/b, H= h/V 2bt
are used.
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Fig. 8. Curves of "entrainment® &, %,

of particles from bed for the case of

a uniform initial distribution: 1) b =
=0.4; 2) 0.6; 3) 0.8; 4) 1,0,

If the relationship between the size of the particles
and the holes in the screen is such that sieving is un-
obstructed, we can regard the surface of the screen

as totally absorbing and put
be=oco, h =,

0, = (2m — 1y m/2.

Then we obtain for a deltoid initial distribution
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These formulas connect the extraction with one
dimensionless parameter H = h/ (2bt)1/ 2 which de-
pends only on the coefficient b. In the case of con-
tinuous feed of material the stay time of the par-
ticles on the screen depends on the screen length L
and the mean feed rate V, which depend on adjustable
parameters and kinematic conditions—the angles of
the apparatus and the direction of the vibrations of the
screen, their frequency, and amplitude.

Taking the volume output as Q = hVB, we obtain
expressions for the parameter H:

H:h/V%?:h/l/ 26 —f/L:Q/BVib_LV.

Thus, the indices of the efficiency of the process
are related‘ to the parameters of the mechanical re-
gime and the load and, hence, the process can be con-
trolled.

The results of the sample calculations and the re-
vealed relationships for the separation of loose mate-
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Fig. 4. Comparison of results of calculations of &,
%, with experiment: a) glass spheres; b) corn;
¢) buckwheat.
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rials have been confirmed by experiments on screen-
ing and precipitation of minerals and nonmetalliferous
materials, separation of grain products, and other
loose materials.

As an example Fig. 4 shows the results of 2 com-
parison of the theoretical and experimental data for
the separation of a two-component mixture of glass
spheres of diameter 2000 ¢ (90 and 95%) and 800 p (10
and 5%) on a laboratory screen (Rotap) with 1200 u

mesh. The small particles were loaded in batches onto

the surface of the bed and the height of the bed and
the duration of the process were varied. The separa-
tion coefficient b, determined from one experiment,
was 0.8 cm?/sec. The experimental points lie on the
curve calculated from formula (14).

This figure shows the results of a comparison of
the theoretical and experimental data for the separa-
tion of corn [4] and buckwheat [5]. In both cases the
adjustable, kinematic, and load parameters of the
machines were varied in a wide range.

NOTATION

b and ¢, are the stochastic coefficients; w is the
probability density; h is the height of bed; ¢ is the
extraction or entrainment; z = z/h, h = (¢/2b)h, and
t = (c®/2b)t are the dimensionless height of section,
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thickness of bed, and duration of process; wy = 1/h is
the probability density for a uniform particle distribu-
tion over the thickness of the bed; N is the mean-
square deviation from uniform particle distribution;

k is the sifting coefficient; hy =(k/b)h and H = h/
/(2bt)1/? are the process parameters; L and B are the
length and breadth of screen; V is the mean feed rate;
Q is the volume output.
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